Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 68(4): e0156223, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38376228

RESUMO

The combination of bedaquiline, pretomanid, and linezolid (BPaL) has become a preferred regimen for treating multidrug- and extensively drug-resistant tuberculosis (TB). However, treatment-limiting toxicities of linezolid and reports of emerging bedaquiline and pretomanid resistance necessitate efforts to develop new short-course oral regimens. We recently found that the addition of GSK2556286 increases the bactericidal and sterilizing activity of BPa-containing regimens in a well-established BALB/c mouse model of tuberculosis. Here, we used this model to evaluate the potential of new regimens combining bedaquiline or the more potent diarylquinoline TBAJ-587 with GSK2556286 and the DprE1 inhibitor TBA-7371, all of which are currently in early-phase clinical trials. We found the combination of bedaquiline, GSK2556286, and TBA-7371 to be more active than the first-line regimen and nearly as effective as BPaL in terms of bactericidal and sterilizing activity. In addition, we found that GSK2556286 and TBA-7371 were as effective as pretomanid and the novel oxazolidinone TBI-223 when either drug pair was combined with TBAJ-587 and that the addition of GSK2556286 increased the bactericidal activity of the TBAJ-587, pretomanid, and TBI-223 combination. We conclude that GSK2556286 and TBA-7371 have the potential to replace pretomanid, an oxazolidinone, or both components, in combination with bedaquiline or TBAJ-587.


Assuntos
Mycobacterium tuberculosis , Nitroimidazóis , Oxazolidinonas , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Animais , Camundongos , Diarilquinolinas/farmacologia , Diarilquinolinas/uso terapêutico , Antituberculosos/uso terapêutico , Antituberculosos/farmacologia , Linezolida/farmacologia , Linezolida/uso terapêutico , Tuberculose/tratamento farmacológico , Nitroimidazóis/farmacologia , Oxazolidinonas/farmacologia , Oxazolidinonas/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
2.
Antimicrob Agents Chemother ; 67(7): e0048123, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37338374

RESUMO

Administration of tuberculosis preventive therapy (TPT) to individuals with latent tuberculosis infection is an important facet of global tuberculosis control. The use of long-acting injectable (LAI) drug formulations may simplify and shorten regimens for this indication. Rifapentine and rifabutin have antituberculosis activity and physiochemical properties suitable for LAI formulation, but there are limited data available for determining the target exposure profiles required for efficacy in TPT regimens. The objective of this study was to determine exposure-activity profiles of rifapentine and rifabutin to inform development of LAI formulations for TPT. We used a validated paucibacillary mouse model of TPT in combination with dynamic oral dosing of both drugs to simulate and understand exposure-activity relationships to inform posology for future LAI formulations. This work identified several LAI-like exposure profiles of rifapentine and rifabutin that, if achieved by LAI formulations, could be efficacious as TPT regimens and thus can serve as experimentally determined targets for novel LAI formulations of these drugs. We present novel methodology to understand the exposure-response relationship and inform the value proposition for investment in development of LAI formulations that have utility beyond latent tuberculosis infection.


Assuntos
Tuberculose Latente , Rifabutina , Animais , Camundongos , Rifabutina/uso terapêutico , Antituberculosos/uso terapêutico , Tuberculose Latente/tratamento farmacológico , Tuberculose Latente/prevenção & controle , Rifampina/uso terapêutico
3.
bioRxiv ; 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37090528

RESUMO

Administration of tuberculosis preventive therapy (TPT) to individuals with latent tuberculosis infection is an important facet of global tuberculosis control. The use of long-acting injectable (LAI) drug formulations may simplify and shorten regimens for this indication. Rifapentine and rifabutin have anti-tuberculosis activity and physiochemical properties suitable for LAI formulation, but there are limited data available for determining the target exposure profiles required for efficacy in TPT regimens. The objective of this study was to determine exposure-activity profiles of rifapentine and rifabutin to inform development of LAI formulations for TPT. We utilized a validated paucibacillary mouse model of TPT in combination with dynamic oral dosing of both drugs to simulate and understand exposure-activity relationships to inform posology for future LAI formulations. This work identified several LAI-like exposure profiles of rifapentine and rifabutin that, if achieved by LAI formulations, could be efficacious as TPT regimens and thus can serve as experimentally-determined targets for novel LAI formulations of these drugs. We present novel methodology to understand the exposure-response relationship and inform the value proposition for investment in development of LAI formulations that has utility beyond latent tuberculosis infection.

4.
Antimicrob Agents Chemother ; 67(4): e0003523, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36920217

RESUMO

A regimen comprised of bedaquiline (BDQ, or B), pretomanid, and linezolid (BPaL) is the first oral 6-month regimen approved by the U.S. Food and Drug Administration and recommended by the World Health Organization for the treatment of extensively drug-resistant tuberculosis. We used a well-established BALB/c mouse model of tuberculosis to evaluate the treatment-shortening potential of replacing bedaquiline with either of two new, more potent diarylquinolines, TBAJ-587 and TBAJ-876, in early clinical trials. We also evaluated the effect of replacing linezolid with a new oxazolidinone, TBI-223, exhibiting a larger safety margin with respect to mitochondrial toxicity in preclinical studies. Replacing bedaquiline with TBAJ-587 at the same 25-mg/kg dose significantly reduced the proportion of mice relapsing after 2 months of treatment, while replacing linezolid with TBI-223 at the same 100-mg/kg dose did not significantly change the proportion of mice relapsing. Replacing linezolid or TBI-223 with sutezolid in combination with TBAJ-587 and pretomanid significantly reduced the proportion of mice relapsing. In combination with pretomanid and TBI-223, TBAJ-876 at 6.25 mg/kg was equipotent to TBAJ-587 at 25 mg/kg. We conclude that replacement of bedaquiline with these more efficacious and potentially safer diarylquinolines and replacement of linezolid with potentially safer and at least as efficacious oxazolidinones in the clinically successful BPaL regimen may lead to superior regimens capable of treating both drug-susceptible and drug-resistant TB more effectively and safely.


Assuntos
Nitroimidazóis , Oxazolidinonas , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Animais , Camundongos , Diarilquinolinas/farmacologia , Diarilquinolinas/uso terapêutico , Antituberculosos/uso terapêutico , Linezolida/uso terapêutico , Tuberculose/tratamento farmacológico , Nitroimidazóis/farmacologia , Nitroimidazóis/uso terapêutico , Oxazolidinonas/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
5.
Cell ; 186(5): 1013-1025.e24, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36827973

RESUMO

The emergence of drug-resistant tuberculosis has created an urgent need for new anti-tubercular agents. Here, we report the discovery of a series of macrolides called sequanamycins with outstanding in vitro and in vivo activity against Mycobacterium tuberculosis (Mtb). Sequanamycins are bacterial ribosome inhibitors that interact with the ribosome in a similar manner to classic macrolides like erythromycin and clarithromycin, but with binding characteristics that allow them to overcome the inherent macrolide resistance of Mtb. Structures of the ribosome with bound inhibitors were used to optimize sequanamycin to produce the advanced lead compound SEQ-9. SEQ-9 was efficacious in mouse models of acute and chronic TB as a single agent, and it demonstrated bactericidal activity in a murine TB infection model in combination with other TB drugs. These results support further investigation of this series as TB clinical candidates, with the potential for use in new regimens against drug-susceptible and drug-resistant TB.


Assuntos
Antituberculosos , Mycobacterium tuberculosis , Animais , Camundongos , Antituberculosos/farmacologia , Macrolídeos , Farmacorresistência Bacteriana , Claritromicina
6.
Pathogens ; 9(10)2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33007866

RESUMO

Siderophores produced in soil by plant growth-promoting rhizobacteria (PGPRs) play several roles, including nutrient mobilizers and can be useful as plants defense elicitors. We investigated the role of a synthetic mixed ligand bis-catechol-mono-hydroxamate siderophore (SID) that mimics the chemical structure of a natural siderophore, fimsbactin, produced by Acinetobacter spp. in the resistance against the phytopathogen Pseudomonas syringaepv tomato DC3000 (Pst DC3000), in Arabidopsis thaliana. We first tested the antibacterial activity of SID against Pst DC3000 in vitro. After confirming that SID had antibacterial activity against Pst DC3000, we tested whether the observed in vitro activity could translate into resistance of Arabidopsis to Pst DC3000, using bacterial loads as endpoints in a plant infection model. Furthermore, using quantitative polymerase chain reaction, we explored the molecular actors involved in the resistance of Arabidopsis induced by SID. Finally, to assure that SID would not interfere with PGPRs, we tested in vitro the influence of SID on the growth of a reference PGPR, Bacillus subtilis. We report here that SID is an antibacterial agent as well as an inducer of systemic priming of resistance in A. thaliana against Pst DC3000, and that SID can, at the same time, promote growth of a PGPR.

7.
Artigo em Inglês | MEDLINE | ID: mdl-29735562

RESUMO

The antileprosy drug clofazimine was recently repurposed as part of a newly endorsed short-course regimen for multidrug-resistant tuberculosis. It also enables significant treatment shortening when added to the first-line regimen for drug-susceptible tuberculosis in a mouse model. However, clofazimine causes dose- and duration-dependent skin discoloration in patients, and the optimal clofazimine dosing strategy in the context of the first-line regimen is unknown. We utilized a well-established mouse model to systematically address the impacts of duration, dose, and companion drugs on the treatment-shortening activity of clofazimine in the first-line regimen. In all studies, the primary outcome was relapse-free cure (culture-negative lungs) 6 months after stopping treatment, and the secondary outcome was bactericidal activity, i.e., the decline in the lung bacterial burden during treatment. Our findings indicate that clofazimine activity is most potent when coadministered with first-line drugs continuously throughout treatment and that equivalent treatment-shortening results are obtained with half the dose commonly used in mice. However, our studies also suggest that clofazimine at low exposures may have negative impacts on treatment outcomes, an effect that was evident only after the first 3 months of treatment. These data provide a sound evidence base to inform clofazimine dosing strategies to optimize the antituberculosis effect while minimizing skin discoloration. The results also underscore the importance of conducting long-term studies to allow the full evaluation of drugs administered in combination over long durations.


Assuntos
Antituberculosos/uso terapêutico , Clofazimina/uso terapêutico , Tuberculose/tratamento farmacológico , Animais , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Distribuição Aleatória , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
8.
J Psychiatr Res ; 78: 72-7, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27082490

RESUMO

Women have a higher prevalence of depression compared to men. Serum levels of Brain-derived neurotrophic factor (BDNF) are decreased in depression. BDNF may also have a protective role in the pathogenesis of coronary artery disease (CAD) or events. We examined whether there are gender differences in BDNF levels in patients with stable CAD and comorbid depression. We enrolled 37 patients (17 women) with stable CAD with and without depression from a single medical center. All patients had depression assessment with the Beck Depression Inventory-II questionnaire. Both plasma and platelet BDNF were measured in all patients using a standard ELISA method. Platelet BDNF levels were higher than plasma BDNF levels in the entire group (5903.9 ± 1915.6 vs 848.5 ± 460.5 pg/ml, p < 0.001). Women had higher platelet BDNF levels than men (6954.2 ± 1685.6 vs. 5011.2 ± 1653.5 pg/ml, p < 0.001). Women without depression (BDI-II < 5, n = 8) had higher platelet BDNF than men without depression (n = 8, 7382.8 ± 1633.1 vs 4811.7 ± 1642.3 pg/ml, p = 0.007). Women with no or minimal depression (BDI < 14, n = 14) had higher platelet BDNF levels than men with no or minimal depression (n = 18, 6900.2 ± 1486.6 vs 4972.9 ± 1568.9 pg/ml, p = 0.001). The plasma BDNF levels were similar between men and women in all categories of depression. In conclusion, women with stable CAD have increased platelet BDNF levels when compared to men with stable CAD regardless of their level of depression. Sex specific differences in BDNF could possibly indicate differences in factors linking platelet activation and depression in men and women.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/sangue , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/complicações , Depressão/sangue , Depressão/complicações , Caracteres Sexuais , Idoso , Plaquetas/metabolismo , Estudos de Coortes , Doença da Artéria Coronariana/psicologia , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Plasma/metabolismo , Escalas de Graduação Psiquiátrica , Inquéritos e Questionários
9.
Antimicrob Agents Chemother ; 60(2): 1091-6, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26643352

RESUMO

Pyrazinamide (PZA) is a key sterilizing drug in first-line tuberculosis (TB) regimens and exerts its activity entirely during the first 2 months in human infections. We recently described the reduced activity of PZA in C3HeB/FeJ mice with large caseous tubercles due to neutral pH. Here, we aimed to determine the contribution of PZA to the sterilizing activity of the first-line TB regimen in C3HeB/FeJ and BALB/c mice. Three regimens were compared (in combinations: R, rifampin; H, isoniazid; E, ethambutol; Z, pyrazinamide; with numbers indicating the treatment duration, in months): 2RHEZ/4RH, 2RHE/4RH, and 2RHEZ/4RHZ. Lung CFU counts were assessed after 0 and 2 months of treatment, and relapse rates were assessed 3 months after 3, 4.5, and 6 months of treatment. The relapse rates after 3 months of treatment were 53% and 95% in C3HeB/FeJ mice receiving 2RHEZ/1RH and 2RHE/1RH, respectively, and 67%, 100%, and 80% in BALB/c receiving 2RHEZ/1RH, 2RHE/1RH, and 2RHEZ/1RHZ, respectively. The relapse rates after 4.5 months of treatment were 32%, 20%, and 0% in C3HeB/FeJ mice receiving 2RHEZ/2.5RH, 2RHE/2.5RH, and 2RHEZ/2.5RHZ, respectively, and 0% and 67% in BALB/c receiving 2RHEZ/2.5RH and 2RHE/2.5RH, respectively. The month-6 relapse rates were 0%, 13%, and 0% in C3HeB/FeJ mice given 2RHEZ/4RH, 2RHE/4RH, and 2RHEZ/4RHZ, respectively, and 7% in BALB/c mice receiving 2RHE/4RH. The addition of PZA shortens the duration of treatment needed to prevent relapse in both mouse strains. However, while its contribution is limited to the first 2 months of treatment in BALB/c mice, continuing PZA beyond the first 2 months is beneficial in C3HeB/FeJ mice by preventing relapse among those with the highest disease burden.


Assuntos
Antituberculosos/farmacologia , Pirazinamida/farmacologia , Tuberculose Pulmonar/tratamento farmacológico , Animais , Modelos Animais de Doenças , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Quimioterapia Combinada/métodos , Etambutol/farmacologia , Feminino , Isoniazida/farmacologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Mutação , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidade , Rifampina/farmacologia , Resultado do Tratamento , Tuberculose Pulmonar/mortalidade , Tuberculose Pulmonar/patologia
10.
Antimicrob Agents Chemother ; 60(1): 270-7, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-26503656

RESUMO

New regimens based on two or more novel agents are sought to shorten or simplify treatment of tuberculosis (TB). Pretomanid (PMD) is a nitroimidazole in phase 3 trials that has significant bactericidal activity alone and in combination with bedaquiline (BDQ) and/or pyrazinamide (PZA). We previously showed that the novel combination of BDQ+PMD plus the oxazolidinone sutezolid (SZD) had sterilizing activity superior to that of the first-line regimen in a murine model of TB. The present experiments compared the activity of different oxazolidinones in combination with BDQ+PMD with or without PZA in the same model. The 3-drug regimen of BDQ+PMD plus linezolid (LZD) had sterilizing activity approaching that of BDQ+PMD+SZD and superior to that of the first-line regimen. The addition of PZA further enhanced activity. Reducing the duration of LZD to 1 month did not significantly affect the activity of the regimen. Halving the LZD dose or replacing LZD with RWJ-416457 modestly reduced activity over the first month but not after 2 months. AZD5847 and tedizolid also increased the bactericidal activity of BDQ+PMD, but they were less effective than the other oxazolidinones. These results provide optimism for safe, short-course oral regimens for drug-resistant TB that may also be superior to the current first-line regimen for drug-susceptible TB.


Assuntos
Antituberculosos/farmacologia , Diarilquinolinas/farmacologia , Nitroimidazóis/farmacologia , Oxazolidinonas/farmacologia , Tuberculose Pulmonar/tratamento farmacológico , Animais , Carga Bacteriana , Modelos Animais de Doenças , Esquema de Medicação , Combinação de Medicamentos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Linezolida/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Organofosfatos/farmacologia , Oxazóis/farmacologia , Pirazinamida/farmacologia , Fatores de Tempo , Resultado do Tratamento , Tuberculose Pulmonar/microbiologia
12.
Antimicrob Agents Chemother ; 59(3): 1455-65, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25534737

RESUMO

New drugs to treat drug-resistant tuberculosis are urgently needed. Extensively drug-resistant and probably the totally drug-resistant tuberculosis strains are resistant to fluoroquinolones like moxifloxacin, which target gyrase A, and most people infected with these strains die within a year. In this study, we found that a novel aminobenzimidazole, VXc-486, which targets gyrase B, potently inhibits multiple drug-sensitive isolates and drug-resistant isolates of Mycobacterium tuberculosis in vitro (MICs of 0.03 to 0.30 µg/ml and 0.08 to 5.48 µg/ml, respectively) and reduces mycobacterial burdens in lungs of infected mice in vivo. VXc-486 is active against drug-resistant isolates, has bactericidal activity, and kills intracellular and dormant M. tuberculosis bacteria in a low-oxygen environment. Furthermore, we found that VXc-486 inhibits the growth of multiple strains of Mycobacterium abscessus, Mycobacterium avium complex, and Mycobacterium kansasii (MICs of 0.1 to 2.0 µg/ml), as well as that of several strains of Nocardia spp. (MICs of 0.1 to 1.0 µg/ml). We made a direct comparison of the parent compound VXc-486 and a phosphate prodrug of VXc-486 and showed that the prodrug of VXc-486 had more potent killing of M. tuberculosis than did VXc-486 in vivo. In combination with other antimycobacterial drugs, the prodrug of VXc-486 sterilized M. tuberculosis infection when combined with rifapentine-pyrazinamide and bedaquiline-pyrazinamide in a relapse infection study in mice. Furthermore, the prodrug of VXc-486 appeared to perform at least as well as the gyrase A inhibitor moxifloxacin. These findings warrant further development of the prodrug of VXc-486 for the treatment of tuberculosis and nontuberculosis mycobacterial infections.


Assuntos
Antibacterianos/uso terapêutico , Benzimidazóis/uso terapêutico , Infecções por Mycobacterium/tratamento farmacológico , Inibidores da Topoisomerase II/uso terapêutico , Animais , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana
13.
Antimicrob Agents Chemother ; 58(4): 2316-21, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24492372

RESUMO

Preventing the development of tuberculosis (TB) in contacts of patients with multidrug-resistant TB (MDR-TB) by the treatment of latent TB infection (LTBI) is highly desirable. However, few safe, well tolerated, and effective drugs are available to treat MDR-LTBI and the published guidance is limited. Fortunately, six new chemical entities from four classes developed to treat TB have entered clinical trials in the past decade. We tested three of these drugs alone and in combination in an experimental paucibacillary LTBI chemotherapy model using BALB/c and C3HeB/FeJ mice immunized with a recombinant strain of Mycobacterium bovis bacillus Calmette-Guérin (rBCG30) and then challenged with a low-dose aerosol of M. tuberculosis H37Rv. The regimens tested contained bedaquiline (TMC), PA-824 (Pa), sutezolid (PNU), and/or one of two fluoroquinolones. Control mice received rifampin (RIF) or isoniazid (INH). In BALB/c mice, TMC-containing regimens and the Pa-PNU combination were the most active test regimens and were at least as effective as RIF. Pa, PNU, and levofloxacin had activity comparable to that of INH. Virtually identical results were observed in C3HeB/FeJ mice. This study confirms the potent activity of TMC observed previously in BALB/c mice and highlights Pa alone or in combination with either PNU or a fluoroquinolone as a regimen worthy of evaluation in future clinical trials of MDR-LTBI. Given their closer pathological representation of human TB lesions, C3HeB/FeJ mice may become a preferred model for the experimental chemotherapy of LTBI. Future studies should evaluate additional clinically relevant LTBI regimens in this strain including relapse as an endpoint.


Assuntos
Antituberculosos/uso terapêutico , Tuberculose Latente/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Animais , Antituberculosos/farmacologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Mycobacterium bovis/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...